LightGBM 调参方法(具体操作)

LightGBM 调参方法(具体操作)

鄙人调参新手,最近用lightGBM有点猛,无奈在各大博客之间找不到具体的调参方法,于是将自己的调参notebook打印成markdown出来,希望可以跟大家互相学习。

其实,对于基于决策树的模型,调参的方法都是大同小异。一般都需要如下步骤:

  1. 首先选择较高的学习率,大概0.1附近,这样是为了加快收敛的速度。这对于调参是很有必要的。
  2. 对决策树基本参数调参
  3. 正则化参数调参
  4. 最后降低学习率,这里是为了最后提高准确率

所以,下面的调参例子是基于上述步骤来操作。数据集为一个(4400+, 1000+)的数据集,全是数值特征,metric采用均方根误差。

(PS:还是吐槽一下,lightgbm参数的同义词(alias)实在是太多了,有时候不同的参数但同一个意思的时候真的很困扰,下面同义的参数我都用/划开,方便查看。)

Step1. 学习率和估计器及其数目

不管怎么样,我们先把学习率先定一个较高的值,这里取 learning_rate = 0.1,其次确定估计器boosting/boost/boosting_type的类型,不过默认都会选gbdt

为了确定估计器的数目,也就是boosting迭代的次数,也可以说是残差树的数目,参数名为n_estimators/num_iterations/num_round/num_boost_round。我们可以先将该参数设成一个较大的数,然后在cv结果中查看最优的迭代次数,具体如代码。

在这之前,我们必须给其他重要的参数一个初始值。初始值的意义不大,只是为了方便确定其他参数。下面先给定一下初始值:

以下参数根据具体项目要求定:

'boosting_type'/'boosting': 'gbdt' 'objective': 'regression' 'metric': 'rmse'

以下参数我选择的初始值,你可以根据自己的情况来选择:

'max_depth': 6 ### 根据问题来定咯,由于我的数据集不是很大,所以选择了一个适中的值,其实4-10都无所谓。 'num_leaves': 50 ### 由于lightGBM是leaves_wise生长,官方说法是要小于2^max_depth 'subsample'/'bagging_fraction':0.8 ### 数据采样 'colsample_bytree'/'feature_fraction': 0.8 ### 特征采样

下面我是用LightGBM的cv函数进行演示:

params = {
    'boosting_type': 'gbdt', 'objective': 'regression', 'learning_rate': 0.1, 'num_leaves': 50, 'max_depth': 6, 'subsample': 0.8, 'colsample_bytree': 0.8, }
data_train = lgb.Dataset(df_train, y_train, silent=True) cv_results = lgb.cv( params, data_train, num_boost_round=1000, nfold=5, stratified=False, shuffle=True, metrics='rmse', early_stopping_rounds=50, verbose_eval=50, show_stdv=True, seed=0) print('best n_estimators:', len(cv_results['rmse-mean'])) print('best cv score:', cv_results['rmse-mean'][-1])
[50] cv_agg's rmse: 1.38497 + 0.0202823 best n_estimators: 43 best cv score: 1.3838664241

由于我的数据集不是很大,所以在学习率为0.1时,最优的迭代次数只有43。那么现在,我们就代入(0.1, 43)进入其他参数的tuning。但是还是建议,在硬件条件允许的条件下,学习率还是越小越好。

Step2. max_depth 和 num_leaves

这是提高精确度的最重要的参数。

max_depth :设置树深度,深度越大可能过拟合

num_leaves:因为 LightGBM 使用的是 leaf-wise 的算法,因此在调节树的复杂程度时,使用的是 num_leaves 而不是 max_depth。大致换算关系:num_leaves = 2^(max_depth),但是它的值的设置应该小于 2^(max_depth),否则可能会导致过拟合。

我们也可以同时调节这两个参数,对于这两个参数调优,我们先粗调,再细调:

这里我们引入sklearn里的GridSearchCV()函数进行搜索。不知道怎的,这个函数特别耗内存,特别耗时间,特别耗精力。

from sklearn.model_selection import GridSearchCV ### 我们可以创建lgb的sklearn模型,使用上面选择的(学习率,评估器数目) model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=50, learning_rate=0.1, n_estimators=43, max_depth=6, metric='rmse', bagging_fraction = 0.8,feature_fraction = 0.8) params_test1={ 'max_depth': range(3,8,2), 'num_leaves':range(50, 170, 30) } gsearch1 = GridSearchCV(estimator=model_lgb, param_grid=params_test1, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4)
gsearch1.fit(df_train, y_train)
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_
Fitting 5 folds for each of 12 candidates, totalling 60 fits [Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.0min [Parallel(n_jobs=4)]: Done 60 out of 60 | elapsed: 3.1min finished ([mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 50},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 80},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 110},  mean: -1.88629, std: 0.13750, params: {'max_depth': 3, 'num_leaves': 140},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 50},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 80},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 110},  mean: -1.86917, std: 0.12590, params: {'max_depth': 5, 'num_leaves': 140},  mean: -1.89254, std: 0.10904, params: {'max_depth': 7, 'num_leaves': 50},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 110},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 140}], {'max_depth': 7, 'num_leaves': 80}, -1.8602436718814157)

这里,我们运行了12个参数组合,得到的最优解是在max_depth为7,num_leaves为80的情况下,分数为-1.860。

这里必须说一下,sklearn模型评估里的scoring参数都是采用的higher return values are better than lower return values(较高的返回值优于较低的返回值)

但是,我采用的metric策略采用的是均方误差(rmse),越低越好,所以sklearn就提供了neg_mean_squared_erro参数,也就是返回metric的负数,所以就均方差来说,也就变成负数越大越好了。

所以,可以看到,最优解的分数为-1.860,转化为均方差为np.sqrt(-(-1.860)) = 1.3639,明显比step1的分数要好很多。

至此,我们将我们这步得到的最优解代入第三步。其实,我这里只进行了粗调,如果要得到更好的效果,可以将max_depth在7附近多取几个值,num_leaves在80附近多取几个值。千万不要怕麻烦,虽然这确实很麻烦。

params_test2={
    'max_depth': [6,7,8], 'num_leaves':[68,74,80,86,92] } gsearch2 = GridSearchCV(estimator=model_lgb, param_grid=params_test2, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4) gsearch2.fit(df_train, y_train) gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_
Fitting 5 folds for each of 15 candidates, totalling 75 fits [Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.8min [Parallel(n_jobs=4)]: Done 75 out of 75 | elapsed: 5.1min finished ([mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 68},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 74},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 80},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 86},  mean: -1.87506, std: 0.11369, params: {'max_depth': 6, 'num_leaves': 92},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 68},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 74},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 80},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 86},  mean: -1.86024, std: 0.11364, params: {'max_depth': 7, 'num_leaves': 92},  mean: -1.88197, std: 0.11295, params: {'max_depth': 8, 'num_leaves': 68},  mean: -1.89117, std: 0.12686, params: {'max_depth': 8, 'num_leaves': 74},  mean: -1.86390, std: 0.12259, params: {'max_depth': 8, 'num_leaves': 80},  mean: -1.86733, std: 0.12159, params: {'max_depth': 8, 'num_leaves': 86},  mean: -1.86665, std: 0.12174, params: {'max_depth': 8, 'num_leaves': 92}], {'max_depth': 7, 'num_leaves': 68}, -1.8602436718814157)

可见最大深度7是没问题的,但是看细节的话,发现在最大深度为7的情况下,叶结点的数量对分数并没有影响。

Step3: min_data_in_leaf 和 min_sum_hessian_in_leaf

说到这里,就该降低过拟合了。

min_data_in_leaf 是一个很重要的参数, 也叫min_child_samples,它的值取决于训练数据的样本个树和num_leaves. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合。

min_sum_hessian_in_leaf:也叫min_child_weight,使一个结点分裂的最小海森值之和,真拗口(Minimum sum of hessians in one leaf to allow a split. Higher values potentially decrease overfitting)

我们采用跟上面相同的方法进行:

params_test3={
    'min_child_samples': [18, 19, 20, 21, 22], 'min_child_weight':[0.001, 0.002] } model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80, learning_rate=0.1, n_estimators=43, max_depth=7, metric='rmse', bagging_fraction = 0.8, feature_fraction = 0.8) gsearch3 = GridSearchCV(estimator=model_lgb, param_grid=params_test3, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4) gsearch3.fit(df_train, y_train) gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_
Fitting 5 folds for each of 10 candidates, totalling 50 fits [Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.9min [Parallel(n_jobs=4)]: Done 50 out of 50 | elapsed: 3.3min finished ([mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.001},  mean: -1.88057, std: 0.13948, params: {'min_child_samples': 18, 'min_child_weight': 0.002},  mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.001},  mean: -1.88365, std: 0.13650, params: {'min_child_samples': 19, 'min_child_weight': 0.002},  mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.001},  mean: -1.86024, std: 0.11364, params: {'min_child_samples': 20, 'min_child_weight': 0.002},  mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.001},  mean: -1.86980, std: 0.14251, params: {'min_child_samples': 21, 'min_child_weight': 0.002},  mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.001},  mean: -1.86750, std: 0.13898, params: {'min_child_samples': 22, 'min_child_weight': 0.002}], {'min_child_samples': 20, 'min_child_weight': 0.001}, -1.8602436718814157)

这是我经过粗调后细调的结果,可以看到,min_data_in_leaf的最优值为20,而min_sum_hessian_in_leaf对最后的值几乎没有影响。且这里调参之后,最后的值没有进行优化,说明之前的默认值即为20,0.001。

Step4: feature_fraction 和 bagging_fraction

这两个参数都是为了降低过拟合的。

feature_fraction参数来进行特征的子抽样。这个参数可以用来防止过拟合及提高训练速度。

bagging_fraction+bagging_freq参数必须同时设置,bagging_fraction相当于subsample样本采样,可以使bagging更快的运行,同时也可以降拟合。bagging_freq默认0,表示bagging的频率,0意味着没有使用bagging,k意味着每k轮迭代进行一次bagging。

不同的参数,同样的方法。

params_test4={
    'feature_fraction': [0.5, 0.6, 0.7, 0.8, 0.9], 'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 1.0] } model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80, learning_rate=0.1, n_estimators=43, max_depth=7, metric='rmse', bagging_freq = 5, min_child_samples=20) gsearch4 = GridSearchCV(estimator=model_lgb, param_grid=params_test4, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4) gsearch4.fit(df_train, y_train) gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_
Fitting 5 folds for each of 25 candidates, totalling 125 fits [Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.6min [Parallel(n_jobs=4)]: Done 125 out of 125 | elapsed: 7.1min finished ([mean: -1.90447, std: 0.15841, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.5},  mean: -1.90846, std: 0.13925, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.6},  mean: -1.91695, std: 0.14121, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.7},  mean: -1.90115, std: 0.12625, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.8},  mean: -1.92586, std: 0.15220, params: {'bagging_fraction': 0.6, 'feature_fraction': 0.9},  mean: -1.88031, std: 0.17157, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.5},  mean: -1.89513, std: 0.13718, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.6},  mean: -1.88845, std: 0.13864, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.7},  mean: -1.89297, std: 0.12374, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.8},  mean: -1.89432, std: 0.14353, params: {'bagging_fraction': 0.7, 'feature_fraction': 0.9},  mean: -1.88088, std: 0.14247, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.5},  mean: -1.90080, std: 0.13174, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.6},  mean: -1.88364, std: 0.14732, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.7},  mean: -1.88987, std: 0.13344, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.8},  mean: -1.87752, std: 0.14802, params: {'bagging_fraction': 0.8, 'feature_fraction': 0.9},  mean: -1.88348, std: 0.13925, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.5},  mean: -1.87472, std: 0.13301, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.6},  mean: -1.88656, std: 0.12241, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.7},  mean: -1.89029, std: 0.10776, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.8},  mean: -1.88719, std: 0.11915, params: {'bagging_fraction': 0.9, 'feature_fraction': 0.9},  mean: -1.86170, std: 0.12544, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.5},  mean: -1.87334, std: 0.13099, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.6},  mean: -1.85412, std: 0.12698, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.7},  mean: -1.86024, std: 0.11364, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.8},  mean: -1.87266, std: 0.12271, params: {'bagging_fraction': 1.0, 'feature_fraction': 0.9}], {'bagging_fraction': 1.0, 'feature_fraction': 0.7}, -1.8541224387666373)

从这里可以看出来,bagging_feaction和feature_fraction的理想值分别是1.0和0.7,一个很重要原因就是,我的样本数量比较小(4000+),但是特征数量很多(1000+)。所以,这里我们取更小的步长,对feature_fraction进行更细致的取值。

params_test5={
'feature_fraction': [0.62, 0.65, 0.68, 0.7, 0.72, 0.75, 0.78 ] } model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80, learning_rate=0.1, n_estimators=43, max_depth=7, metric='rmse', min_child_samples=20) gsearch5 = GridSearchCV(estimator=model_lgb, param_grid=params_test5, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4) gsearch5.fit(df_train, y_train) gsearch5.grid_scores_, gsearch5.best_params_, gsearch5.best_score_
Fitting 5 folds for each of 7 candidates, totalling 35 fits [Parallel(n_jobs=4)]: Done 35 out of 35 | elapsed: 2.3min finished ([mean: -1.86696, std: 0.12658, params: {'feature_fraction': 0.62},  mean: -1.88337, std: 0.13215, params: {'feature_fraction': 0.65},  mean: -1.87282, std: 0.13193, params: {'feature_fraction': 0.68},  mean: -1.85412, std: 0.12698, params: {'feature_fraction': 0.7},  mean: -1.88235, std: 0.12682, params: {'feature_fraction': 0.72},  mean: -1.86329, std: 0.12757, params: {'feature_fraction': 0.75},  mean: -1.87943, std: 0.12107, params: {'feature_fraction': 0.78}], {'feature_fraction': 0.7}, -1.8541224387666373)

好吧,feature_fraction就是0.7了

Step5: 正则化参数

正则化参数lambda_l1(reg_alpha), lambda_l2(reg_lambda),毫无疑问,是降低过拟合的,两者分别对应l1正则化和l2正则化。我们也来尝试一下使用这两个参数。

params_test6={
'reg_alpha': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5], 'reg_lambda': [0, 0.001, 0.01, 0.03, 0.08, 0.3, 0.5] } model_lgb = lgb.LGBMRegressor(objective='regression',num_leaves=80, learning_rate=0.b1, n_estimators=43, max_depth=7, metric='rmse', min_child_samples=20, feature_fraction=0.7) gsearch6 = GridSearchCV(estimator=model_lgb, param_grid=params_test6, scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=4) gsearch6.fit(df_train, y_train) gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_
Fitting 5 folds for each of 49 candidates, totalling 245 fits [Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.8min [Parallel(n_jobs=4)]: Done 192 tasks | elapsed: 10.6min [Parallel(n_jobs=4)]: Done 245 out of 245 | elapsed: 13.3min finished ([mean: -1.85412, std: 0.12698, params: {'reg_alpha': 0, 'reg_lambda': 0},  mean: -1.85990, std: 0.13296, params: {'reg_alpha': 0, 'reg_lambda': 0.001},  mean: -1.86367, std: 0.13634, params: {'reg_alpha': 0, 'reg_lambda': 0.01},  mean: -1.86787, std: 0.13881, params: {'reg_alpha': 0, 'reg_lambda': 0.03},  mean: -1.87099, std: 0.12476, params: {'reg_alpha': 0, 'reg_lambda': 0.08},  mean: -1.87670, std: 0.11849, params: {'reg_alpha': 0, 'reg_lambda': 0.3},  mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0, 'reg_lambda': 0.5},  mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0},  mean: -1.86190, std: 0.13613, params: {'reg_alpha': 0.001, 'reg_lambda': 0.001},  mean: -1.86515, std: 0.14116, params: {'reg_alpha': 0.001, 'reg_lambda': 0.01},  mean: -1.86908, std: 0.13668, params: {'reg_alpha': 0.001, 'reg_lambda': 0.03},  mean: -1.86852, std: 0.12289, params: {'reg_alpha': 0.001, 'reg_lambda': 0.08},  mean: -1.88076, std: 0.11710, params: {'reg_alpha': 0.001, 'reg_lambda': 0.3},  mean: -1.88278, std: 0.13064, params: {'reg_alpha': 0.001, 'reg_lambda': 0.5},  mean: -1.87480, std: 0.13889, params: {'reg_alpha': 0.01, 'reg_lambda': 0},  mean: -1.87284, std: 0.14138, params: {'reg_alpha': 0.01, 'reg_lambda': 0.001},  mean: -1.86030, std: 0.13332, params: {'reg_alpha': 0.01, 'reg_lambda': 0.01},  mean: -1.86695, std: 0.12587, params: {'reg_alpha': 0.01, 'reg_lambda': 0.03},  mean: -1.87415, std: 0.13100, params: {'reg_alpha': 0.01, 'reg_lambda': 0.08},  mean: -1.88543, std: 0.13195, params: {'reg_alpha': 0.01, 'reg_lambda': 0.3},  mean: -1.88076, std: 0.13502, params: {'reg_alpha': 0.01, 'reg_lambda': 0.5},  mean: -1.87729, std: 0.12533, params: {'reg_alpha': 0.03, 'reg_lambda': 0},  mean: -1.87435, std: 0.12034, params: {'reg_alpha': 0.03, 'reg_lambda': 0.001},  mean: -1.87513, std: 0.12579, params: {'reg_alpha': 0.03, 'reg_lambda': 0.01},  mean: -1.88116, std: 0.12218, params: {'reg_alpha': 0.03, 'reg_lambda': 0.03},  mean: -1.88052, std: 0.13585, params: {'reg_alpha': 0.03, 'reg_lambda': 0.08},  mean: -1.87565, std: 0.12200, params: {'reg_alpha': 0.03, 'reg_lambda': 0.3},  mean: -1.87935, std: 0.13817, params: {'reg_alpha': 0.03, 'reg_lambda': 0.5},  mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0},  mean: -1.87774, std: 0.12477, params: {'reg_alpha': 0.08, 'reg_lambda': 0.001},  mean: -1.87911, std: 0.12027, params: {'reg_alpha': 0.08, 'reg_lambda': 0.01},  mean: -1.86978, std: 0.12478, params: {'reg_alpha': 0.08, 'reg_lambda': 0.03},  mean: -1.87217, std: 0.12159, params: {'reg_alpha': 0.08, 'reg_lambda': 0.08},  mean: -1.87573, std: 0.14137, params: {'reg_alpha': 0.08, 'reg_lambda': 0.3},  mean: -1.85969, std: 0.13109, params: {'reg_alpha': 0.08, 'reg_lambda': 0.5},  mean: -1.87632, std: 0.12398, params: {'reg_alpha': 0.3, 'reg_lambda': 0},  mean: -1.86995, std: 0.12651, params: {'reg_alpha': 0.3, 'reg_lambda': 0.001},  mean: -1.86380, std: 0.12793, params: {'reg_alpha': 0.3, 'reg_lambda': 0.01},  mean: -1.87577, std: 0.13002, params: {'reg_alpha': 0.3, 'reg_lambda': 0.03},  mean: -1.87402, std: 0.13496, params: {'reg_alpha': 0.3, 'reg_lambda': 0.08},  mean: -1.87032, std: 0.12504, params: {'reg_alpha': 0.3, 'reg_lambda': 0.3},  mean: -1.88329, std: 0.13237, params: {'reg_alpha': 0.3, 'reg_lambda': 0.5},  mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0},  mean: -1.87196, std: 0.13099, params: {'reg_alpha': 0.5, 'reg_lambda': 0.001},  mean: -1.88222, std: 0.14735, params: {'reg_alpha': 0.5, 'reg_lambda': 0.01},  mean: -1.86618, std: 0.14006, params: {'reg_alpha': 0.5, 'reg_lambda': 0.03},  mean: -1.88579, std: 0.12398, params: {'reg_alpha': 0.5, 'reg_lambda': 0.08},  mean: -1.88297, std: 0.12307, params: {'reg_alpha': 0.5, 'reg_lambda': 0.3},  mean: -1.88148, std: 0.12622, params: {'reg_alpha': 0.5, 'reg_lambda': 0.5}], {'reg_alpha': 0, 'reg_lambda': 0}, -1.8541224387666373)

哈哈,看来我多此一举了。

step6: 降低learning_rate

之前使用较高的学习速率是因为可以让收敛更快,但是准确度肯定没有细水长流来的好。最后,我们使用较低的学习速率,以及使用更多的决策树n_estimators来训练数据,看能不能可以进一步的优化分数。

我们可以用回lightGBM的cv函数了 ,我们代入之前优化好的参数。

params = {
'boosting_type': 'gbdt', 'objective': 'regression', 'learning_rate': 0.005, 'num_leaves': 80, 'max_depth': 7, 'min_data_in_leaf': 20, 'subsample': 1, 'colsample_bytree': 0.7, } data_train = lgb.Dataset(df_train, y_train, silent=True) cv_results = lgb.cv( params, data_train, num_boost_round=10000, nfold=5, stratified=False, shuffle=True, metrics='rmse', early_stopping_rounds=50, verbose_eval=100, show_stdv=True) print('best n_estimators:', len(cv_results['rmse-mean'])) print('best cv score:', cv_results['rmse-mean'][-1])
[100] cv_agg's rmse: 1.52939 + 0.0261756 [200] cv_agg's rmse: 1.43535 + 0.0187243 [300] cv_agg's rmse: 1.39584 + 0.0157521 [400] cv_agg's rmse: 1.37935 + 0.0157429 [500] cv_agg's rmse: 1.37313 + 0.0164503 [600] cv_agg's rmse: 1.37081 + 0.0172752 [700] cv_agg's rmse: 1.36942 + 0.0177888 [800] cv_agg's rmse: 1.36854 + 0.0180575 [900] cv_agg's rmse: 1.36817 + 0.0188776 [1000] cv_agg's rmse: 1.36796 + 0.0190279 [1100] cv_agg's rmse: 1.36783 + 0.0195969 best n_estimators: 1079 best cv score: 1.36772351783

这就是一个大概过程吧,其实也有更高级的方法,但是这种基本的对于GBM模型的调参方法也是需要了解的吧。如有问题,请多指教。

Reference:

  1. https://www.2cto.com/kf/201607/528771.html
  2. https://zhuanlan.zhihu.com/p/30627440
  3. https://www.jianshu.com/p/b4ac0596e5ef
转载请注明原文链接,对本文有任何建议和意见请在评论区讨论,谢谢!
 
出处:https://www.cnblogs.com/bjwu/p/9307344.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/119581.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • AfxMessageBox和MessageBox差别

    AfxMessageBox和MessageBox差别

  • vue跨域问题解决方案_vue解决跨域问题

    vue跨域问题解决方案_vue解决跨域问题用Vue-cli脚手架搭建了个demo,前后分离就有跨域问题的出现。vue-clie搭建demo步骤(传送门):https://www.cnblogs.com/wangenbo/p/8487764.html我自己在网上找了2个接口做测试:CSDN:https://www.csdn.net/api/articles?type=more&category=home&show…

  • Anaconda详细安装及使用教程(带图文)

    Anacond的介绍Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。Conda是一个开源的包、环境管理器,可以用于…

  • SOAP协议的深度解析

    SOAP协议的深度解析笔记上传:1.soap与http的区别:HTTP只负责把数据传送过去,不会管这个数据是XML、HTML、图片、文本文件或者别的什么。( HTTP就是邮局的协议,他们规定了你的信封要怎么写,要贴多少邮票等。。。。)而SOAP协议则定义了怎么把一个对象变成XML文本,在远程如何调用等  (SOAP就是你们之间交流的协议,负责把你所需要表达的意思写在信纸上,同时也负责让对方能够看得懂你的信。)2.s…

  • 77道Spring面试题以及参考答案(2021年最新版)

    77道Spring面试题以及参考答案(2021年最新版)一、Spring概述1.什么是spring?Spring是一个轻量级Java开发框架,最早有RodJohnson创建,目的是为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题。它是一个分层的JavaSE/JavaEEfull-stack(一站式)轻量级开源框架,为开发Java应用程序提供全面的基础架构支持。Spring负责基础架构,因此Java开发者可以专注于应用程序的开发。Spring最根本的使命是解决企业级应用开发的复杂性,即简化Java开发。Spring可以做很多事情,它为企

  • Linux 安装rabbitmq「建议收藏」

    1.ubuntu16.04中安装RabbitMQ1).首先必须要有Erlang环境支持安装之前要装一些必要的库:#sudoapt-getinstallbuild-essential#sudoapt-getinstalllibncurses5-dev#sudoapt-getinstalllibssl-dev#sudoapt-getinstallm4#…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号